名城大学大学院	学生会員	牧田祐輝・	中島康介
名城大学	国際会員	小高猛司	板橋一雄
㈱建設技術研究所	国際会員	李 圭太	
中部土質試験協同組合	正会員	坪田邦治·	加藤雅也

1. はじめに

河川堤防の浸透時のすべり破壊に対する安定性評価には,室内三軸試験で得られる強度定数が用いられる。 その際,粘性土以外の堤体材料に対しては CU 試験で強度定数を求めて,全応力解析により安全率を算定す ることとされている¹⁾。一方,河川堤防は広範な粒度の土で構成されていることが多く,室内三軸試験を実 施する際には,粒度調整した再構成供試体を用いることとなる。そのため,室内三軸試験において強度定数 を評価する場合には,粒度調整の方法,再構成供試体の密度,試験の排水条件,などの影響を十分に把握し ておく必要がある。特に,ここ数年で河川堤防の質的整備が急ピッチで進められてきたが,その検討が大量 かつ早急故に,個々の検討事例の安定解析で用いられた強度定数について,その妥当性が十分に吟味されて きたとは言いがたい。例えば,現場技術者の判断で,全応力解析で用いるべき強度定数に,CD条件で得た ϕ_d を代用した例が見受けられるが,その危険性を十分に知った上での判断なのか疑問が残る事例も多い。

本論文では、河川堤防の砂礫を対象に大型三軸試験ならびに小型三軸試験を実施し、供試体寸法、供試体 密度、排水条件が、砂礫の力学特性にどのような影響を及ぼすのか検討を行う。

2. 供試体の作製および試験の手順

図-1に実験試料の粒度分布を示す。実際の 詳細点検がなされた小鴨川,高津川,江の川 の3河川で採取した試料を用いた。いずれの 試料も、1ヶ所から大型三軸試験での必要量

(100kg 弱)を採取することは困難であるた め、同じ堤防のいくつかの地点で採取した試 料を混合している。このうち、小鴨川、高津 川の試料については、図に示す原粒度のまま 大型三軸試験を実施した。江の川試料につい ては、直径 5cm の小型供試体での実験に供す るために、9.5mm 超の礫を取り除く粒度調整 を行った。粒度調整後の粒度分布も図-1 にあ わせて示す。

大型三軸試験に用いた小鴨川試料の供試体乾燥密度は1.80g/cm³とした。これは別途実施した突固め試験に より,締固め度90%となるように決めたものである。一方,同じく大型三軸試験に用いる高津川試料では現 地堤防で計測した密度と同じ1.57g/cm³で供試体を作製した。この場合,突固め試験を実施しておらず正確な 締固め度は得られていないが,比較的ゆる詰めの供試体となっている²⁰。大型三軸試験においては,小鴨川 試料,高津川試料のいずれにおいても,自然乾燥試料を3つ割モールド内で5層ずつ密度管理をしながら,

Evaluation of mechanical properties of gravel-mixed river dike materials using by triaxial test: Y. Makita, K. Nakashima, T. Kodaka, K. Itabashi, (Meijo Univ.), K.-T. Lee (CTI Engg. Co., Ltd.), K. Tsubota and M. Kato (Geo-Labo Chubu)

軽く締固めて供試体を作製した。供試体は二酸化炭素による飽和化作業の後,18時間程度,所定の有効拘束 圧で等方圧密させてから, CU あるいは CD 試験を実施した。なお,いずれの条件においても載荷速度は 0.1%/min とした。また,一連の大型三軸試験では,試験後の試料を自然乾燥させることにより,繰り返し同 じ試料を用いて供試体を作製した。

小型三軸試験で用いた江の川試料は,原粒度の砂礫から粒径 9.5mm を超える礫を除外し,含水比 14%に 水分調整した後に,2つ割りモールドを用いて5層に突き固めて供試体を作製した。供試体の乾燥密度は, 別途実施した突固め試験で得た締固め度 90,85 および 80%にそれぞれ対応するように,1.78,1.66,1.56g/cm³ とした。二重負圧法による飽和化の作業後に CU および CD 試験を実施した。載荷速度は 0.1%/min であり, 初期有効拘束圧は 50,100,200kPa とした。

表-1,表-2ではそれぞれ大型三軸試験,小型三軸試験の試験条件をまとめたものを示す。

試料名	小鴨川							高津川				
乾燥密度(g/cm ³)	1.8	1.80(締固め度90%)(密詰め)						1.57(ゆる詰め)				
試験条件	CU			CU CD							CD	
有効拘束圧(kPa)	50	100	200	50	100	200	50	100	200		100	\square

表-1 大型三軸試験の試験条件

表-2 小型三軸試験の試験条件

試料名		江の川																
乾燥密度(g/cm ³)	1.78(締固め度90%)					1.66(締固め度85%)					1.56(締固め度80%)							
試験条件	CU		CD		CU		CD		CU		CD		_					
有効拘束圧(kPa)	50	100	200	50	100	200	50	100	200	50	100	200	50	100	200	50	100	200

3. 大型三軸試験結果

はじめに、小鴨川および高津川試料を用いた大型三軸試験結果から示す。異なる試料による実験結果であ るが、両者は粒度組成が比較的似ている砂礫でもあるため、本章では、小鴨川および高津川試料を、それぞ れ密詰めおよび緩詰め砂礫の代表例の実験結果として考察する。

図-2に応力~ひずみ関係を示す。密詰めの小鴨川試料の CD 試験では、どの拘束圧でも軸ひずみ 7~8%付 近で増加が止まり一定値となるか、やや減少している。一方、緩詰めの高津川試料の CD 試験では、有効拘 束圧 100kPa の 1 ケースのみであるが、試験終了まで軸差応力は単調増加している。また、小鴨川試料の CU 試験では、有効拘束圧 50、100kPa の場合は軸差応力の最大値にあまり大きな違いは見られないが、有効拘束 圧 200kPa の場合は、大きな軸差応力が発生している。図-2(c)に示すのは 2 つの試料による CU 試験を比較し た図である。小鴨川試料の CU 試験では軸差応力は単調増加するのに対し、高津川試料の CU 試験では軸差 応力はせん断初期に増加するのみで、その後ほぼ一定値となる。

図-3には有効応力経路図を示す。小鴨川試料の \overline{CU} 試験では、せん断初期に少し塑性圧縮を示し、その後 正のダイレタンシーの発現により軸差応力が増加している。また、 \overline{CU} 試験での破壊応力比は 1.46、CD 試験 での破壊応力比は 1.74 となっており、CD 試験での値は比較的大きな値となった。緩詰めの高津川試料の \overline{CU} 試験においては、変相後の正のダイレタンシーの発現が見られず軸差応力の増加もほとんど無く、破壊応力 比は極めて小さい値となった。一方、CD 試験では、 \overline{CU} 試験とは対照的に、せん断中の排水の効果により破 壊応力比は非常に大きくなった。図-3(c)に示すのは 2 つの試料による \overline{CU} 試験を比較した図である。正のダ イレタンシーの変相までは、両試料の有効応力経路は非常に近いことが分かる。

表-3 は両試料の実験ケースにおいて破壊時のモールの応力円と破壊基準から得られた内部摩擦角と粘着力 をまとめたものを示す。図-4 及び図-5 は、それぞれ両試料における破壊時のモールの応力円と破壊規準を示 したものである。 CU 試験では全応力でも整理することにより、CU 試験と解釈した強度定数も示している。 いずれの試料においても、試験条件別の内部摩擦角の大きさは、 $\phi_{cu} < \phi' < \phi_{cd}$ の順になっている。全応力で整 理した場合、いずれの試料でも粘着力が現れるが、密詰め傾向の強い小鴨川試料では特に大きな粘着力が見 られる。いずれの ϕ_{cu} も小さい値となるが、特に緩詰め傾向の強い高津川試料の ϕ_{cu} は非常に小さい値となる。 また、小鴨川試料において、CU 試験による ϕ' とCD 試験による ϕ_d を比べると、 ϕ_d の方が若干大きくなって いる。ただし、CU 試験結果にばらつきがあるため、初期有効拘束圧 100kPa の結果のみ比較すると、 ϕ' と

φ_{cd}にはそれほど大きな差がない。しかし、高津川試料においては、明らかに∲とφ_dには大きな差があり、緩詰め傾向の砂礫においては、同じ有効応力で整理した **2** つの内部摩擦角であっても、せん断中の体積変化の **有**無によって大きな差が生じることが分かった。

表-3 内部摩擦角と粘着力

実験の種類	ф _{си}	c _{cu}	φ'	фd		
小鴨川試料	22.5°	39.1kPa	35.3°	42.1°		
高津川試料	13.2°	5.0kPa	25.6°	38.7°		

図-4 モールの応力円と破壊規準(小鴨川試料)

図-5 モールの応力円と破壊規準(高津川試料)

4. 小型三軸試験結果

前章の大型三軸試験において観察された供試体密度が力学挙動へ及ぼす影響について,より系統的に調べるために,粒度調整した江の川試料を用いて小型三軸試験を実施した。

図-6 および図-7 はそれぞれ、全試験の応力~ひずみ関係および有効応力経路を示す。図-6 に着目すると、 締固め度 90%の供試体においては、CD 試験ではピーク強度を示しているのに対し、CU 試験では軸差応力 はだらだらと単調に増加しつづける。一方、締固め度 85%と 80%の供試体においては、CD 試験ではせん断 初期の軸差応力の増加傾向は異なるものの、いずれもだらだらと軸差応力は増加し続けるのに対して、CU 試 験では軸差応力は小さいながらもピーク強度を示している。図-7 の有効応力経路に着目すると、(a) に示す 締固め度 90%の供試体の CU 試験においては、正のダイレタンシーに起因し、せん断の半ばから塑性膨張を 伴うひずみ硬化を示し、典型的な密詰めの砂の挙動を呈していることが分かる。また、どの初期有効拘束圧 の試験においても、最終的な軸差応力の差はほとんどない。初期有効拘束圧 50kPa および 100kPa の CU 試験 では、CD 試験で得られる破壊線(破壊応力比 1.58) に漸近してゆくが、初期有効拘束圧 200kPa の試験では その破壊線に漸近しないまま最終状態となった。図-7 (b) に示す締固め度 85%の供試体においては、初期有 効拘束圧が小さい試験では塑性膨張を示し、初期有効拘束圧が大きい試験では塑性圧縮していることが分か る。図-7 (c) に示す締固め度 80%の供試体の CU 試験では、ピーク強度を示した後、塑性圧縮を伴うひずみ 軟化を示しており,典型的な緩詰め砂の挙動を呈していることが分かる。破壊応力比を見てみると,締固め 度が小さくなるにつれて, CD 試験および CU 試験で得られた破壊応力比に差が生じていることが分かる。ま た締固め度 80%の供試体においては, CU 試験での破壊応力比は CD 試験に比べてさらに小さくなり 1.04 と なった。これは後述するように,緩詰め砂になると CU 試験での�゚'と CD 試験での�ed が,同じ有効応力で整 理した内部摩擦角であっても大きく異なることを示唆している。

図-8~10は、小型三軸試験における破壊時のモールの応力円とそれらから求められる破壊規準ならびに強度定数を示す。表-4に各試験で得られた強度定数、すなわち内部摩擦角と粘着力をまとめて示す。締固め度

90%および締固め度 85%では c_{cu}=110kPa , c_{cu}=50kPa と 非常に大きな粘着力が見られ,逆に締固め度 80%では粘 着力が現れないという差があるものの,いずれも全応力 で整理したモールの応力円で得られた内部摩擦角\ou 非常に小さい値となっている。有効応力で整理したモー ルの応力円で得られた\oi

実験の種類	ф _{си}	c _{cu}	φ'	фd
締固め度90%	11.4°	110kPa	36.4°	38.8°
締固め度 85%	11.8°	50kPa	30.4°	35.3°
締固め度 80%	14.2°	0kPa	23.1°	34.3°

擦角も大きく異なる。CD 試験の結果を整理したモールの応力円で得られた ϕ_d は、締固め度の違いによって 差があるものの、 ϕ 'ほどの差はないことが分かる。いずれの試験結果においても、試験条件別の内部摩擦角 の大きさは、 $\phi_{cu} < \phi' < \phi_d$ の順になっている。CD 試験は基本的に有効応力であることから CD 試験で得られる 強度定数は、CU 試験で得られる有効応力の強度定数と近いものとなるように考えられる。しかしながら、 今回の試験結果では、締固め度が小さくなるにつれて ϕ 'と ϕ_d には大きな差が生じている。

5. まとめ

河川堤防のすべりに対する安全性検討を行う場合には、全応力法を基本とした安定解析を実施することから、強度定数はCU試験で得られるφ_{cu}を用いることになっている。その際、粘着力は考慮せずに円弧すべり 安定計算を行うために、算出される安全率は小さな値となる。この安全率は安全側ではあるものの、すべり に対して不適格であると過度に判定される堤防も多く発生してしまうなど不都合も多い。そのような場合に は、現場の判断でCD試験で得られるφ_dを強度定数として用いる事例もしばしば見られる。しかしながら、 本実験結果からも分かるように、CD試験によるφ_dが大きい場合でも、CU試験を見る限り、構造的にも不 安定な緩詰め傾向が強い地盤材料の場合があるので、CD試験結果を用いる場合にはダイレタンシー特性や 透水性まで含めて、十分にその力学特性を把握しておく必要がある。

参考文献:1)(財)国土技術研究センター:河川構造の構造検討の手引き,2002.2)小高・板橋・中島・岸・李・ 坪田・加藤:河川堤防の室内せん断試験における礫分粒度調整の効果,第20回中部地盤工学シンポジウム論 文集,pp.19-22,2008.